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Abstract. We study Lie algebra κ-deformed Euclidean space with undeformed rotation algebra SOa(n) and
commuting vectorlike derivatives. Infinitely many realizations in terms of commuting coordinates are con-
structed and a corresponding star product is found for each of them. The κ-deformed noncommutative space
of the Lie algebra type with undeformed Poincaré algebra and with the corresponding deformed coalgebra
is constructed in a unified way.

1 Introduction

In the last decade, there has been a great interest in the
formulation and consistency of physical theories defined on
noncommutative (NC) spaces, and in finding their conse-
quences [1–5].
However, there is no clear guiding physical principle for

how to build a fundamental theory on NC spaces and which
NC spaces are physically acceptable and preferable. Also,
it is not known how matter and gravity influence the prop-
erties of NC spaces at small distances, and vice versa.
Nevertheless, it is important to classify NC spaces and

their properties, and, particularly, to develop a unifying
approach to and a generalized theory for such NC spaces
that are convenient for physical applications. The notion
of generalized symmetries and their role in the analysis
of NC spaces is also crucial. In order to make a step in
this direction, we analyze a NC space of the Lie algebra
type, particularly the so-called κ-deformed space intro-
duced in [6–8].
For simplicity, we restrict ourselves to κ-deformed Eu-

clidean space. The analysis can be easily extended to
κ-deformed Minkowski space. The dimensional parame-
ter a = 1

κ
is a very small length scale, and when it goes

to zero, the undeformed space appears as a smooth limit.
The generators of generalized rotations satisfy the un-
deformed SOa(n) algebra, i.e. the undeformed Lorentz
algebra in κ-deformed Minkowski space. Dirac deriva-
tives are assumed to mutually commute and transform
as a vector representation under SOa(n) algebra. This
κ-deformed space was studied by different groups, from
both the mathematical and physical point of view [9–18].
Specially, realizations in terms of commutative coordi-
nates were obtained and discussed in the cases of symmet-
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ric ordering and normal (left and right) ordering of NC
coordinates [12, 18].
We analyzeκ-deformedEuclidean space using themeth-

ods developed for deformed single and multimode oscilla-
tors in the Fock space representations [19–26]. Particularly,
we use the methods for constructing deformed creation and
annihilation operators in terms of ordinary bosonic mul-
timode oscillators, i.e. a kind of bosonisation [19, 20, 25].
Also, we use the construction of transition number opera-
tors and, generally, of generators proposed in [20, 21, 24].
The simple connection between creation and annihila-

tion operators with NC coordinates and Dirac derivatives
is established by the Bargmann-type representation. We
find infinitely many new realizations in terms of commu-
tative coordinates. All these realizations are on an equal
footing, and a star product is associated to each of them.
The general feature of NC spaces is that there are generally
infinitely many realizations in terms of commutative coor-
dinates and the physical results should not depend on the
realization used.
The plan of the paper is as follows. In Sect. 2 we present

κ-deformed Euclidean space and its realizations in Eu-
clidean space. In Sect. 3 the undeformed rotation algebra
SOa(n) compatible with kappa deformation and its gen-
eral realizations are considered. In Sect. 4 the action of
the generators SOa(n) on NC coordinates leads to in-
finitely many new realizations of NC space in terms of
commutative coordinates and their derivatives. In Sect. 5
the corresponding realizations of Dirac derivatives are con-
structed. The Lie algebra type κ-deformed NC space with
undeformed rotation (Poincaré) algebra and the corres-
ponding deformed coalgebra is proposed in a unique way.
In Sect. 6 the invariant Klein–Gordon operator and its re-
alizations are given for κ-deformed Euclidean space, with
a short summary of all realizations included. In Sect. 7
the hermiticity properties are discussed. In Sect. 8 the cor-
responding realizations for star products are presented.
Finally, in Sect. 9 a short conclusion is given.
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2 Kappa-deformed Euclidean space
and its realizations

Let us consider a Lie algebra type noncommutative (NC)
space with coordinates x̂1, x̂2, ..., x̂n, as follows:

[x̂µ, x̂ν ] = iCµνλx̂λ = i(aµx̂ν −aνx̂µ) , (1)

where a1, a2, ..., an are constant real parameters describing
a deformation of Euclidean space. The structure constants
are

Cµνλ = aµδνλ−aνδµλ . (2)

We choose a1 = a2 = ...= an−1 = 0, an = a and use Latin
indices for the subspace (1, 2, ..., n−1) and Greek indices
for the whole space (1, 2, ..., n) [16–18]. Then the algebra of
the NC coordinates becomes

[x̂i, x̂j ] = 0, [x̂n, x̂i] = iax̂i, i, j = 1, 2, ..., n−1 .
(3)

Using the methods developed in [19, 20, 24, 25] and the
Bargmann representation we point out that there exists
a realization of the NC coordinates x̂µ in terms of ordinary
commutative coordinates x1, x2, ..., xn and their deriva-
tives ∂1, ∂2, ..., ∂n, where ∂µ =

∂
∂xµ
. The general Ansatz for

the NC coordinates x̂µ satisfying the algebra (3) is

x̂i = xiϕ(A) ,

x̂n = xnψ(A)+ iaxk∂kγ(A) , (4)

where A = ia∂n. In the above relations the deformed cre-
ation operators are represented by x̂µ, the bosonic creation
operators by xµ, the bosonic annihilation operator by ∂µ
and the vacuum state by 1. Inserting this Ansatz into (3)
we obtain

ϕ′

ϕ
ψ = γ−1 , (5)

where ϕ′ = dϕ
dA . There are infinitely many representations

parametrized by two of the functions ϕ,ψ, γ, with the
boundary conditions

ϕ(0) = 1, ψ(0) = 1 , (6)

and with γ(0) = ϕ′(0)+1 finite. At this point we could
make rather ad hoc arbitrary assumptions on the deriva-
tives ∂̂µ which cannot be motivated physically nor mathe-
matically.

3 SOa(n) algebra

Instead, we demand that there should exist generators
Mµν satisfying the ordinary undeformed SOa(n) algebra:

[Mµν ,Mλρ] = δνλMµρ− δµλMνρ− δνρMµλ+ δµρMνλ .
(7)

There are infinitely many representations of Mµν in
terms of commutative coordinates xλ, their derivatives ∂λ,
and deformation parameters a1, a2, ..., an. The generators
Mµν are linear in x and form an infinite series in ∂.
Let us assume that ai = 0, an = a, i.e. the same defor-

mation parameters as in the x̂ NC coordinate algebra, (3).
Then a simple Ansatz is

Mij = xi∂j−xj∂i ,

Min = xi∂nF1−xn∂iF2+iaxi∆F3+iaxk∂k∂iF4 ,

Mni =−Min , (8)

where ∆ = ∂k∂k and the summation over repeated in-
dices is understood. The functions F1, F2, F3, F4 depend on
A = ia∂n. In principle, the F functions could depend on
B = (ia)2∆. For simplicity, we assume that F dependen on
A only. Inserting Ansatz (8), into the algebra (7), from

[Mij ,Mjn] =Min ,

[Min,Mjn] =−Mij , (9)

we obtain the following two equations:

F1F2+A F
′
1F2+AF1F4−2AF1F3 = 1 ,

2F 23 −F
′
3F2+F3F4 = 0 , (10)

where F ′ = dFdA . Note that two of the functions F1, F2, F3,
F4 are arbitrary. The boundary conditions are

F1(0) = F2(0) = 1 , (11)

and F3(0), F4(0) are required to be finite.
Now we can calculate the commutators [Mµν , x̂λ], sub-

stituting x̂λ, (4), and Mµν , (8). The result is expressed in
terms of ϕ, ψ, γ and F functions, restricted by (5) and (10),
and is linear in the commutative coordinates xµ. In gen-
eral, this result cannot be expressed in terms of x̂ and M
only, without the derivatives ∂.

4 Action of SOa(n) generators
on NC coordinates

At this point we demand that the generatorsMµν , x̂λ close
linearly under commutation, i.e. we obtain the extended
Lie algebra with extended structure constants satisfying
Jacobi relations. In order to construct the extended Lie al-
gebra of generators the x̂λ, and Mµν , for general aµ, we
proceed as follows. The most general covariant form of
commutators [Mµν , x̂λ], of the generators of rotationsMµν
with NC coordinates x̂λ, is antisymmetric in the indices µ
and ν, linear in the generators x̂,M , and with smooth limit
[Mµν , xλ] = xµδνλ−xνδµλ, when aµ→ 0. It is given by

[Mµν , x̂λ] = x̂µδνλ− x̂νδµλ+isaλMµν
− it(aµMνλ−aνMµλ)

+ iuaα(Mαµδνλ−Mανδµλ) ,

where s, t, u ∈R.
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The necessary and sufficient conditions for the consis-
tency of the extended Lie algebra with generators x̂λ and
Mµν are

[Mαβ , [x̂µ, x̂ν ]]+[x̂µ, [x̂ν ,Mαβ]]+[x̂ν , [Mαβ , x̂µ]] = 0 ,

[Mαβ, [Mγδ, x̂µ]]+[Mγδ, [x̂µ,Mαβ ]]+[x̂µ, [Mαβ,Mγδ]] = 0 .

All extended Jacobi identities are satisfied for the unique
solution s= u= 0, t= 1:

[Mµν , x̂λ] = x̂µδνλ− x̂νδµλ− iaµMνλ+ iaνMµλ . (12)

Inserting ai = 0, an = a we obtain two important relations:

[Min, x̂n] = x̂i+iaMin , (13)

[Min, x̂j ] =−δij x̂n+iaMij . (14)

An important ingredient of the symmetry structure of
κ-deformed space are the Leibniz rules of the generators of
the rotations. They can be derived immediately from (13)
and (14) [16–18]

Mij(f ·g) = (Mijf) ·g+f · (Mijg) ,

Min(f ·g) = (Minf) ·g+(e
Af) · (Ming)

− ia

(
∂j
1

ϕ(A)
f

)
· (Mijg) ,

where f , g are functions of the NC coordinates x̂µ, and

[∂i, x̂j ] = δijϕ(A) , [∂i, x̂n] = ia∂iγ(A) ,

[∂n, x̂i] = 0 , [∂n, x̂n] = 1 ,

for ψ = 1.
In a more technical language, the above equations are

the coproducts

�Mij =Mij⊗1+1⊗Mij ,

�Min =Min⊗1+e
A⊗Min− iaDje

A⊗Mij ,

where eA and the Dirac derivativesDµ are defined in Sect. 5,
(29), for the case ψ = 1. The final result for the coprod-
uct depends only on aDµ, and a

2DµDµ. In the limit a→ 0
it gives ordinary undeformed coproduct for Mµν . The
coproduct ∆, which we determined for Mµν , multiplica-
tively extends to the whole algebraSOa(n), which becomes
a Hopf algebra in this way.
From (13) we obtain four equations:

F1ψ+AF
′
1ψ−AF1(γ+1)−ϕ= 0 ,

F ′2ψ−F2ψ
′+F2(γ−1) = 0 ,

F ′3ψ+F3(γ−1) = 0 ,

F ′4ψ+F2γ
′+F4(γ−1) = 0 , (15)

and from (14) we obtain two equations:

F2ϕ
′+F4ϕ+1= 0 ,

F3 =
1

2ϕ
. (16)

Now we have six additional equations, i.e. eight equa-
tions (10), (15), (16) for four functions F1, F2, F3 and F4.
Hence, there are four additional equations which have
to be satisfied. From these consistency relations we ob-
tain two infinite families of solutions satisfying simultan-
eously (10), (15) and (16).

I realization: ψ = 1

We have

F1 = ϕ
e2A−1

2A
, F2 =

1

ϕ
, F3 =

1

2ϕ
, F4 =−

γ

ϕ
,

(17)

where

γ =
ϕ′

ϕ
+1 . (18)

II realization: ψ = 1+2A

We have

F1 = ϕ , F2 =
ψ

ϕ
, F3 =

1

2ϕ
, F4 =−

γ

ϕ
, (19)

where

ϕ=
C−1

C−
√
ψ
, γ = ψ

ϕ′

ϕ
+1 , C ∈R , C �= 1 . (20)

The first realization ψ = 1 can be parametrized by an ar-
bitrary function ϕ(A), ϕ(0) = 1. The second realization
ψ = 1+2A is parametrized with C ∈R, C �= 1.

5 Dirac derivatives

Imposing the undeformed SOa(n) algebra it is natural to
define the Dirac derivativesDµ as

[Mµν , Dλ] = δνλDµ− δµλDν ,

[Dµ, Dν ] = 0 . (21)

The most general Ansatz corresponding to ai = 0, an = a is

Di = ∂iG1(A) ,

Dn = ∂nG2(A)+ ia∆G3(A) . (22)

Inserting them into

[Min, Dn] =Di ,

[Min, Di] =−Dn , (23)

we find four equations:

AF2G
′
2+F2G2−2AF1G3−G1 = 0 ,

F2G
′
3−2(F3+F4)G3 = 0 ,

F1G1−G2 = 0 ,

2F2G
′
1−2(F3+F4)G1+2G3 = 0 . (24)
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The boundary conditions are

G1(0) = 1 , G2(0) = 1 , (25)

andG3(0) is required to be finite. Using our realizations for
the F functions, (17)–(20), we find the following.

I realization: ψ = 1

We have

G1 =
e−A

ϕ
, G2 =

sinhA

A
, G3 =

e−A

2ϕ2
. (26)

II realization: ψ = 1+2A

We have

G1 =
C−
√
ψ

(C−1)
√
ψ
, G2 =

1
√
ψ
, G3 =

(
C−
√
ψ
)2

2(C−1)2
√
ψ
.

(27)

Now we calculate the commutation relations between NC
coordinates x̂µ and the Dirac derivativesDν :

[Di, x̂j ] = δij(−iaDn+
√
1−a2DµDµ) ,

[Di, x̂n] = 0 ,

[Dn, x̂i] = iaDi ,

[Dn, x̂n] =
√
1−a2DµDµ . (28)

These relations are universal for both realizations, ψ = 1
and ψ = 1+2A, and they involve only the deformation pa-
rameter a.
The corresponding coproduct is given by [16–18]

�Dn =Dn⊗
(
− iaDn+

√
1−a2DµDµ

)

+
iaDn+

√
1−a2DµDµ

1−a2DkDk
⊗Dn

+iaDi
iaDn+

√
1−a2DµDµ

1−a2DkDk
⊗Di ,

�Di =Di⊗
(
− iaDn+

√
1−a2DµDµ

)
+1⊗Di .

The Dirac derivatives, together with the generators of the
rotationsMµν , form a κ-deformed Euclidean Hopf algebra
which is undeformed in the algebra sector; see (7) and (21).
The deformation is purely in the coalgebra sector follow-
ing from (13), (14) and (28). Namely, the coalgebra struc-
ture is determined from the deformed commutation rela-
tions, (13), (14) and (28), in a simple and unique way.
In the first realization ψ = 1 one finds the relation

e−A =−iaDn+
√
1−a2DµDµ , (29)

and in the second realization ψ = 1+2A the following rela-
tion holds:

1
√
1+2A

=−iaDn+
√
1−a2DµDµ . (30)

Note that the relations [Dµ, x̂ν ], (28), and the vacuum
condition Dµ|0〉 = 0 define the Fock space. The Gramm
matrices in the Fock space [20, 22] imply the relations
[x̂µ, x̂ν ], (3), and [Dµ, Dν ] = 0.
We point out that the κ-deformed NC space of the Lie

algebra type with the structure constants Cµνλ = aµδνλ−
aνδµλ (see (1) and (2)),

[x̂µ, x̂ν ] = iCµνλx̂λ , (31)

together with the undeformed SOa(n) rotation alge-
bra, (7), leads to the relations

[Mµν , x̂λ] = x̂µδνλ− x̂νδµλ− iCµναMαλ . (32)

Demanding that the Dirac derivatives commute pair-
wise and transform under a vector representation of
SOa(n), (21), we obtain a universal commutation relation:

[Dµ, x̂ν ] = δµν
√
1−a2DαDα+iCµανDα . (33)

Equations (12) and (28) are unified in the above equa-
tions (32) and (33). The Fock space representation is de-
fined byDµ|0〉= 0, ∀µ.
The above NC space of the Lie algebra type with unde-

formed SOa(n) algebra, and commuting Dirac derivatives,
transforming as a vector representation under SOa(n), and
with a smooth limit to Euclidean space, is unique. The re-
alizations of NC space defined by (7), (21), (31)–(33) and
their properties will be treated separately. Some examples
of the Poincaré invariant interpretation of NC spaces and
twisted Poincaré coalgebra were also considered in [27–29].
Furthermore, it is interesting that, for n= 1, the rela-

tion [Dn, x̂n] becomes

[D, x̂] =
√
1−a2D2 .

In the quadratic approximation in a, [D, x̂] ≈ 1− 12a
2D2.

This commutation relation leads to the generalized uncer-
tainty relation with minimal length |a|√

2
[30].

6 Invariant operators

Analogously as we have defined Dirac derivatives, we in-
troduce an invariant operator �, generalizing the Laplace
(D’Alambert) operator, by the equation

[Mµν ,�] = 0 . (34)

A simple Ansatz is

�=∆H1(A)+∂
2
nH2(A) , (35)
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with boundary conditions

H1(0) = 1, H2(0) = 1 .

Then, from the relation (34), we obtain two equations:

AF2H
′
2+2F2H2−2F1H1 = 0 ,

F2H
′
1−2(F3+F4)H1 = 0 . (36)

The solutions for the first realization ψ = 1 are

H1 =
e−A

ϕ2
, H2 =−

2[1− coshA]

A2
. (37)

The second realization is for ψ = 1+2A

H1 =
1

√
ψϕ2
, H2 =

2

A2

(
1+A
√
1+2A

−1

)
. (38)

Alternatively, we define another invariant operator

DµDµ =DiDi+DnDn . (39)

For both realizations, ψ = 1 and ψ = 1+2A, the universal
relations

DµDµ =�(1−
a2

4
�) ,

[�, x̂µ] = 2Dµ (40)

hold, depending only on the deformation parameter a. The
corresponding Leibniz rule for �(fg) can easily be de-
rived [18]. Note that there are infinitely many Dirac deriva-
tives and Laplace operators, differing by multiplication by
the function φ(a2�) with φ(0) = 1.
The new realizations can be summarized as follows.

I realization: ψ = 1

We have

Min = xi∂nϕ
e2A−1

2A
−xn∂i

1

ϕ
+iaxi∆

1

2ϕ
− iaxk∂k∂i

γ

ϕ
,

Di = ∂i
e−A

ϕ
, Dn = ∂n

sinhA

A
+ia∆

e−A

2ϕ2
,

�=∆
e−A

ϕ2
−∂2n

2[1− coshA]

A2
, (41)

where γ = ϕ
′

ϕ +1.

II realization: ψ = 1+2A

We have

Min = xi∂nϕ−xn∂i
ψ

ϕ
+iaxi∆

1

2ϕ
− iaxk∂k∂i

γ

ϕ
,

Di = ∂i
C−
√
ψ

(C−1)
√
ψ
,

Dn = ∂n
1
√
ψ
+ia∆

(
C−
√
ψ
)2

2(C−1)2
√
ψ
,

�=∆
1

√
ψϕ2

+∂2n
2

A2

(
1+A
√
1+2A

−1

)
, (42)

where

ϕ=
C−1

C−
√
ψ
, γ = ψ

ϕ′

ϕ
+1 , C ∈R, C �= 1 .

We point out, that starting from the above two realiza-
tions we can construct infinitely many new realizations by
similarity transformations (i.e., composing our realizations
with inner automorphisms of the completed Weyl algebra
of the x, ∂)

(x̂µ)S = Sx̂µS
−1 , (Mµν)S = SMµνS

−1 ,

where

S = exp {Φ(a∂1, ..., a∂n)} ,

with

Φ(a∂1, ..., a∂n) =
∑
{m}

c{m}(x, ∂)
n∏
µ=1

(a∂µ)
mµ

and

[xµ∂µ, c{m}(x, ∂)] = 0 ,

where {m} = (m1,m2, ...,mn). To preserve the smooth
limit (x̂µ)S→ xµ when a→ 0, the boundary condition on

Φ(a∂1, ..., a∂n) has to be Φ(0, ..., 0) = 0, i.e. S→ 1, when
a→ 0. In this way one can obtain, for example, new solu-
tions where ϕ, F , G, H depend not only on A= ia∂n, but
also on∆= ∂i∂i.
Furthermore, two realizations with ϕ1(A) and ϕ2(A),

but with ψ1(A) = ψ2(A) = ψ(A), can be connected by S12:

(x̂µ)2 = S12(x̂µ)1S
−1
12 ,

where

S12 = exp{xi∂i(lnϕ2− lnϕ1)} .

7 Hermiticity

All relations of the type [x̂, x̂], [M,M ], [M, x̂], [M,D],
[D,D], [D, x̂], (3), (7), (12), (21) and (28), are invariant
under the formal antilinear involution:

x̂†µ = x̂µ, D
†
µ =−Dµ, M

†
µν =−Mµν , c

† = c̄, c ∈C .
(43)

The order of elements in the product is inverted under
the involution. The commutative coordinates xµ and their
derivatives ∂µ also satisfy the involution property: x

†
µ =
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xµ, ∂
†
µ = −∂µ. It is natural to ask whether the realiza-

tions, (17)–(20), satisfy the involution property, (43). It is
easy to verify that x̂†i = x̂i, and D

†
µ =−Dµ, M

†
ij =−Mij .

However, generally, x̂†n �= x̂n,M
†
in �=−Min.

We point out that all realizations can be made hermi-
tian, i.e. consistent with (43), by defining

x̂hn =
1

2

(
x̂n+ x̂

†
n

)
,

Ma.h.in =
1

2

(
Min−M

†
in

)
. (44)

All commutation relations are preserved by this redefi-
nition of x̂n and Min in any realization. Namely, if x̂µ,
Mµν is a realization of (3), (7) and (12), then x̂

†
µ, −M

†
µν is

also a realization of the same relations. Moreover, any lin-
ear combination αx̂µ+(1−α)x̂µ and αMµν − (1−α)M†µν ,
α ∈R satisfies the same relations, (3), (7), and (12). Spe-
cially, for α = 1

2 , we obtain a hermitian realization of the
NC space defined by (3), (7) and (12). For example,

x̂hn =
1

2
(xnψ+iaxk∂kγ+ψxn+iaγ∂kxk)

= xnψ+iaxk∂kγ+
ia

2
ψ′+

ia

2
(n−1)γ . (45)

The simplest realization of κ-deformed space satisfying
the hermiticity property (43) is the left realization with
ϕ= e−A, ψ = 1 and γ = 0, i.e. (see Sect. 8)

x̂i = xie
−A, x̂n = xn ,

Di = ∂i, Dn =
1

a
sin(a∂n)+

ia

2
∆eA ,

Mij = xi∂j−xj∂i ,

Min =
1

a
xi sin(a∂n)−xn∂ie

A+
ia

2
xi∆e

A ,

�=−
2

a2
[cos(a∂n)−1]+∆e

A , (46)

with

e±ia∂nf(x, ..., xn) = f(x, ..., xn−1, xn± ia) . (47)

From the physical point of view, every ϕ-realization is
allowed and, in some sense, corresponds to choosing
a “gauge” for a concrete calculation. Moreover, non-
hermitian realizations (not satisfying the hermiticity prop-
erties (43)) are allowed for concrete calculations [18]. For
example, the symmetric realization ϕS(A) =

A
eA−1

is not

hermitian x̂+n �= x̂n [16–18] (see also Sect. 8, (67)).

8 Realizations of star products

There exists a vector space isomorphism between (the co-
ordinate algebras of) the NC space Rna and the Euclidean
space Rn, depending on the function ϕ(A) (ψ = 1 or ψ =
1+2A). In other words, for a given realization described
by ϕ(A) there is a unique mapping from the functions of

the NC coordinates x̂µ to the functions of the commutative
coordinates xµ.
Let us define the “vacuum” state:

|0〉= 1, Dµ|0〉= ∂µ|0〉= 0 . (48)

Then we define a mapping from f(x̂) to fϕ(x) in a given ϕ-
realization as

f(x̂ϕ)|0〉= fϕ(x) . (49)

The functions f(x̂) are defined as a formal power series
in NC coordinates. Note that all monomials in which the
x̂1 appear m1 times, x̂2 m2 times, ..., x̂n mn times, differ

under permutations, i.e. there are

(
m
mn

)
different mono-

mials, where m =
∑
mµ. However, they are proportional

to each other. A basis in the space of monomials is fixed in
a given ϕ-realization by

Mϕ(x̂)|0〉=Mϕ(x)+Pϕ(x) , (50)

where Mϕ(x̂) is a linear combination of monomials of the
same type (m1, ...,mn) (i.e. x̂1 appearing m1 times, x̂2−
m2 times, etc.), and Pϕ(x) is a polynomial of lower order
thanMϕ(x). We generally write (50) as

M̃ϕ(x̂)|0〉=
[
Mϕ(x̂)+ P̃ϕ(x̂)

]
|0〉=Mϕ(x) ,

where P̃ϕ(x̂) is a polynomial in x̂ of lower order than
Mϕ(x̂). This means that a given ϕ-realization induces
a natural basis for monomials, i.e. a natural ordering pre-
scription; and vice versa, an ordering uniquely defines the
ϕ-realization. For example, (4) and (50) imply

∏
x̂
mi
i |0〉=∏

x
mi
i and for the mixed second-order monomials we

obtain

Mϕ(x̂) = [1+ϕ
′(0)]x̂ix̂n−ϕ

′(0)x̂nx̂ix̂ix̂n

− iaϕ′(0)x̂i ,

Mϕ(x̂ϕ)|0〉= xixn . (51)

Let the M̃ϕ basis correspond to a given ϕ-realization. Then

f(x̂) = fϕ(x̂) =
∑
cϕM̃ϕ(x̂) ,

f(x̂ϕ)|0〉= fϕ(x̂ϕ)|0〉= fϕ(x) . (52)

Now we define a star product in a given ϕ-realization as

(fϕ �ϕ gϕ)(x) = fϕ(x̂ϕ)gϕ(x̂ϕ)|0〉fϕ(x̂ϕ)gϕ(x) . (53)

Generally,

xi �ϕ f(x) = (x̂ϕ)if(x) = xiϕ(A)f(x) ,

xn �ϕ f(x)(x̂ϕ)nf(x) = [xnψ(A)+ iaxk∂kγ(A)]f(x)
(54)

and

f(x)�ϕ xi = xiϕ(A)e
Af(x) ,

f(x)�ϕ xn = [xnψ(A)+ iaxk∂k(γ(A)−1)]f(x) . (55)
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Realizations with ψ = 1

We have for ψ = 1, γ = ϕ
′

ϕ
+1, we find a closed form for the

star product in the ϕ-realization:

(f � g)(z) = exp

{
zi∂xi

[
ϕ(Ax+Ay)

ϕ(Ax)
−1

]

+zi∂yi

[
ϕ(Ax+Ay)

ϕ(Ay)
eAx −1

]}
f(x)g(y)

∣∣∣∣∣x= z
y = z

,

(56)

where Ax = ia
∂
∂xn

and Ay = ia
∂
∂yn
. From (56) it follows

generally that

(g � f)(z)
∣∣∣
ϕ(A)

= (f � g)(z)
∣∣∣
ϕ(A)eA

. (57)

Using (41), ∂i =Diϕe
A and the expression for coproduct

�Di (after (28)), we can write (56) for the star product as

(f � g)(z) =
(
m{exp[zi(�−�0)∂i](f ⊗ g)}

)
(x)
∣∣∣
x=z
,

where�0∂i = ∂i⊗1+1⊗∂i is the undeformed coproduct,
and m is the multiplication map (product) in the Hopf al-
gebra.
In the second order in a, from (56) we obtain

(f � g)(z) = f(z)g(z)+
{
zi

[(
1+ϕ′(0)

)
Ax∂yi

+ϕ′(0)∂xiAy
]

+ zi

[(
1

2
+ϕ′(0)+

1

2
ϕ′′(0)

)
A2x∂yi

+
(
ϕ′′(0)− (ϕ′(0))

2
) (
∂xiAxAy+AxAy∂yi

)

+
1

2
ϕ′′(0)∂xiA

2
y

]

+
1

2
zizj

[(
1+ϕ′(0)

)2
A2x∂yi∂yj +2ϕ

′(0)

×
(
1+ϕ′(0)

)
∂xiAxAy∂yj

+
(
ϕ′(0)

)2
∂xi∂xjA

2
y

]}
f(x)g(y)

∣∣∣x= z
y = z

+O(a3) (58)

and consequently(
f � g− g � f

)
(x) =

(
Axf(x)

)(
Nxg(x)

)

−
(
Nxf(x)

)(
Axg(x)

)

+

(
1

2
+ϕ′(0)

)[(
A2xf(x)

)(
N 2x g(x)

)

−
(
N 2xf(x)

)(
A2xg(x)

)]
+O(a3) ,

(59)

where Nx = xi
∂
∂xi
. We point out that, generally, a factor

A⊗N −N ⊗A appears in all orders of the expansion (f �
g− g � f)(x). For a given ϕ-realization there is a monomial
basisMϕ satisfying (50) with Pϕ(x) = 0, i.e. Mϕ(x̂ϕ)|0〉=
Mϕ(x), and vice versa. Let us consider three cases with
ψ = 1.

Left ordering

If we define the Mϕ basis in such a way that all x̂n are
at the most left in any monomial, then it follows from (4)
and (50), and x̂mnn

∏
x̂
mi
i |0〉 = x

mn
n

∏
x
mi
i , that x̂n = xn,

i.e. ψ = 1, γ = 0, ϕ= e−A. The star product for the left or-
dering is given by (56) with ϕL = e

−A, and alternatively
by

(f �ϕL g)(x) = e
−iaxi∂

x
i ∂
y
nf(x)g(y)

∣∣∣
y=x
. (60)

Right ordering

Similarly, the right ordering is defined so that x̂n are at
the most right in any monomial. Then it follows from (4)
and (50), and (

∏
x̂
mi
i )x̂

mn
n |0〉= (

∏
x
mi
i )x

mn
n , that x̂i = xi,

ψ = 1, ϕ= 1, γ = 1.
The star product for the right ordering is given by (56)

with ϕR = 1, and alternatively by

(f �ϕR g)(x) = e
iayi∂

y
i
∂xnf(x)g(y)

∣∣∣
y=x
. (61)

Symmetric ordering

The general series expansion formula for the star prod-
uct of the Lie algebra type NC space, described by the
structure constants Cµνλ, was given in the symmetric or-
dering [31]. The lowest-order symmetric monomials are

{x̂ix̂j ,
1

2
(x̂ix̂n+ x̂nx̂i), x̂

2
n} ,

{x̂ix̂j x̂k,
1

3
(x̂ix̂j x̂n+ x̂ix̂nx̂j+ x̂nx̂ix̂j) ,

1

3
(x̂ix̂

2
n+ x̂nx̂ix̂n+ x̂

2
nx̂i), x̂

3
n} , etc .

To find a ϕ-realization corresponding to a symmetric or-
dering, we impose the condition (50) as follows:

∑
π

πM(x̂)|0〉=

(
m
mn

)
M(x) , (62)

where the summation is over all different monomials
πM(x̂) differing by permutations (summed with equal

weights). There are

(
m
mn

)
different monomials on the

LHS, where m=
∑
mµ. Specially, for m= k+1, mn = k,

we have
k∑
r=0

(x̂ϕ)
r
n(x̂ϕ)i(x̂ϕ)

k−r
n |0〉= (k+1)xix

k
n, ∀k ∈N

(63)

and use the relation (obtained by shifting x̂i to the left)
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k∑
r=0

x̂rnx̂ix̂
k−r
n =

k∑
r=0

(
k+1
r+1

)
(ia)rx̂ix̂

k−r
n , (64)

from which we find

k∑
r=0

k−r∑
p=0

(
k+1
r+1

)(
k− r
p

)

× (ia)r+pϕ(p)(0)xix
k−r−p
n = (k+1)xix

k
n , (65)

where ϕ(p)(0) is the pth derivative calculated at 0. For l ≥
1, we get

l∑
p=0

(
l+1
p

)
ϕ(p)(0) = 0 . (66)

Solving the above recursive relations starting with ϕ(0) =
1, we obtain

ϕ′(0) =−
1

2
, ϕ′′(0) =

1

12
, ϕ′′′(0) = 0 , etc .

ϕS(A) =
∞∑
p=0

ϕ
(p)
S (0)

p!
Ap =

A

eA−1
. (67)

One can show that (62) is satisfied for every symmetrically
ordered monomial with the above ϕS, (67). Note that

γS(A) =
ϕ′S(A)

ϕS(A)
+1 =−

ϕS(A)−1

A
,

ϕS(A)e
A = ϕS(−A), γS(A)+γS(−A) = 1 ,

g(x)�ϕS f(x)
∣∣∣
a
= f(x)�ϕS g(x)

∣∣∣
−a
. (68)

Inserting ϕL(A) = e
−A, ϕR(A) = 1, ϕS(A) =

A
eA−1

and the

corresponding ψ = 1, γ = ϕ
′

ϕ +1 functions for the left, right
and symmetric ordering, we obtain the results for these
three special cases [18].
Generally, if ψ = 1 then M̃ϕ(x̂) =Mϕ(x̂), i.e. Pϕ(x) =

0, (4) and (50).

Realizations with ψ = 1+2A

For the realizations with ψ = 1+2A, the condition de-
scribed by (50),

M̃ϕ(x̂)|0〉=Mϕ(x) ,

can be fulfilled generally if M̃ϕ(x̂) �=Mϕ(x̂), i.e. if Pϕ(x) �=
0, (50). Namely,

x̂kn|0〉= xn[(1+2A)xn]
k−1 = xkn+Pk−1(x), k ≥ 1 ,

(69)

where k ≥ 1, and Pk−1(x) is a polynomial of order (k−1).
Generally, this holds for all realizations with ψ �= 1,

including the hermitian realizations with ψ = 1, satisfy-
ing (43). For example, we obtain (see (45))

x̂hn|0〉= xn+
ia

2
ψ′(0)+

ia

2
(n−1)γ(0) �= xn . (70)

The isomorphism f to fϕ is defined by f(x̂ϕ)|0〉= fϕ(x),
(49) and (52), and the corresponding star product is de-
fined by (53).
Our approach can be applied and extended to κ-de-

formedMinkowski space. One can define the Klein–Gordon
and Dirac equations for free fields and gauge theory in κ-
deformed space for an arbitrary ϕ-realization. There are
still some open problems concerning the invariant inte-
gral and the variational principle [32] that will be treated
separately.

9 Conclusion

We have presented a unified and simple method of con-
structing realizations of NC spaces in terms of commuta-
tive coordinates xµ and their derivatives ∂µ of Euclidean
space. This method can also be applied to spaces with ar-
bitrary signatures, especially to Minkowski-type spaces.
Particularly, we have studied κ-deformed Euclidean

space with undeformed rotation algebra SOa(n). Dirac
derivatives are constructed as a vector representation
under SOa(n), and they commute themselves, [Dµ, Dν ] = 0.
Similarly, there is an invariant operator � such that
[Mµν ,�] = 0. We have found two infinite new families of
realizations described by ψ = 1 and ψ = 1+2A (ψ = 1, ϕ
arbitrary and ψ = 1+2A, ϕ= C−1

C−
√
ψ
, C �= 1).

Furthermore, we have shown how these realizations can
be extended to satisfy the hermitian properties (43).
We have constructed the star product for any realiza-

tion. We point out that all realizations are on an equal
footing and any of the realizations can be used for a con-
crete physical calculation, and its meaning is similar to the
case when a particular gauge is chosen.
Finally, we have constructed κ-deformed NC space of

the Lie algebra type, (31) with undeformed Poincaré alge-
bra (7) and (21) and deformed coalgebra (32) and (33), in
a unique way. Our approach may be useful in quantum-
gravity models, specially in 2+1 dimension. In this case,
the corresponding Lie algebra is SU(2) orSU(1, 1) [33–35].
For general Lie algebra, (1), there exists a universal for-
mula for the mapping x̂µ = xαϕαµ(∂1, ..., ∂n), correspond-
ing to the totally symmetric ordering [36].
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18. M. Dimitrijević, L. Möller, E. Tsouchnika, J. Phys. A hep-
th/0404224

19. D. Bonatsos, C. Daskaloyannis, Phys. Lett. B 307, 100
(1993); S. Meljanac, M. Mileković, S. Pallua, Phys. Lett. B
328, 55 (1994) [hep-th/9404039]
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